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Abstract

The ability to detect and estimate rainfall from near-real-
time satellite imagery is important in many disciplines. In
this project,' 1 extend recent (2016-2017) hydrometeorology
work on applying deep learning to this problem by applying
modern convolutional neural network (CNN) techniques. 2
After outlining the problem, I briefly discuss key prior work
in both deep learning and hydrometeorology. I outline the
properties of the experimental datasets. Following a dis-
cussion of the machine learning methods applied (including
those of the prior work), I report my experimental results on
the detection and estimation tasks. I conclude with an as-
sessment of these results (which confirm and improve upon
the prior work) and give some thoughts on future directions.

1. Introduction

While there are many different ground and space sen-
sor technologies used to measure rainfall, passive ob-
servational data from geostationary satellites is still the
only long-term, consistently-calibrated, near-realtime, near-
continuous, globally-available data source available. Natu-
rally, there are many research and operational systems that
use this data to identify and estimate rainfall on a global
basis.

These remain difficult problems, particularly due to tem-
poral and spatial skew. The basic problem of rainfall es-
timation is often broken down into (1) a detection, or bi-
nary rain/no-rain classification, problem (where a key chal-
lenge is the class imbalance — global hourly frequency of
remotely-detectable rain is < 5%) and (2) a (conditional)

"Honor code statement: This project is the sole work of the listed
author, done exclusively for CS 231N. The models described here do not
include any third-party software beyond what is distributed with the frame-
works listed.

2Scientific validity: This research is preliminary, and any comparisons
to or reproductions of related work have not been confirmed with those
authors; do not cite or quote without contacting the author.

estimation problem (where a key challenge is skew — allow-
ing rare, but important, heavy rainfall events while remain-
ing consistent with prior distributions).

Surprisingly little work has been done to apply modern
deep learning techniques in this domain. The notable excep-
tion is recent work at U.C. Irvine (published in 2016-2017)
that has begun to apply deep learning to infrared imagery
from NOAA’s GOES satellite constellation [25, 27, 26]. In
this research, I (1) replicate the UCI work as a baseline; (2)
apply modern convolutional architectures to improve upon
them; and (3) provide experimental results supporting the
effectiveness of these improvements.

2. Related Work

There are many different modeling problems related to
precipitation. For example, it is common to try to build
models to predict rainfall at a given point location based on
weather station observations, considered as a time series.
Examples of this in the neural network literature include
[30] and [8].

However, the simple point-measurement approach obvi-
ously leaves out a vital spatial aspect — rain clouds, and
hence rain, have both extent and paths in space. Data
from space-borne radars, microwave sounders, and visi-
ble/infrared imagery capture this and are often fused to
compensate for their different spatiotemporal coverage and
atmospheric penetration properties (see [18] for a useful
survey). Well-known operational and research products
such as CMORPH [14] and TMPA [12] involve complex,
hand-crafted fusion/calibration pipelines that apply rela-
tively simple modeling techniques (histograms, linear re-
gression, etc.) that are easily interpretable. However, there
are also examples of shallow neural networks being used as
a component of such pipelines [28]. For example, the U.C.
Irvine PERSIANN system [11] has been in operational use
for nearly two decades, and similar shallow neural networks
continue to be developed [17].

More recently, there have been attempts to apply deep
learning to meteorology problems. For example, Grover et
al. applied deep learning to wind patterns [6]. More closely



related is the work of Shi et al. [21] and Klein et al. [16]
to process weather radar “imagery” (ground radar displays,
essentially screen captures). The main results of which I am
aware in applying deep learning to satellite imagery for pre-
cipitation detection/estimation are a recent series of papers
by Tao et al. [25, 27, 26] that applied a simple 3-layer fully-
connected architecture with greedy layer-wise pre-training
based on stacked denoising autoencoders [29] to GOES in-
frared satellite imagery [1].

A key potential benefit of the approach is simplicity. The
fact that a simple architecture using single-platform data
can produce results comparable to complex, multi-platform
pipelines such as that in PERSIANN-CCS [9] is exciting.
The goal of the research reported here has been to confirm
this research and then extend it using modern architectural
ideas.

3. Data

I first replicated the dataset of Tao et al. [25]. This con-
sists of infrared satellite imagery from the NOAA GOES-13
satellite [1], hereafter GOES); the National Weather Service
(NWS) Quantitative Precipitation Estimate hourly analysis
product [19], hereafter QPE, as “ground truth”; and the
U.C. Irvine PERSIANN-CCS hourly product [9], hereafter
PCCS, as a state-of-practice baseline.

The dataset covers the study area, which is a portion of
the Great Plains region (30°-45° N latitude, 90°-105° W
longitude). This area is of practical interest as the Great
Plains region generally sees large (mesoscale) clusters of
intense convective storm systems [10] in the late summer.

3.1. NOAA GOES Imagery

I downloaded 196 GB of raw hourly imagery [1] for in-
frared bands 3 (WV, A = 6.5um) and 4 (IR1, A = 10.7um)
from the NOAA CLASS repository for summer 2012 and
2013 and winter 2012-2013 and 2013-2014.3> Raw pixels
were extracted from NOAA GVAR AREA files, calibrated,*
resampled to a ~8 km geographic grid (0.08° x 0.08°) from
~4 km resolution pixels, navigated® and cropped to produce
rasters covering only the study area (Figure 1(a),(b)).

3.2. NWS QPE Stage IV

QPE Stage IV [19] is an operational data product that is
released in various production stages and at varying time

3Note that “summer” means June-July-August (JJA) and “winter”
means December-January-February (DJF). These are standard meteorol-
ogy conventions, but this also avoids two anomaly periods (May 2012, Sep.
2013) during which the GOES-13 imager was not operating correctly.

4Raw pixels require calibration due to variation across instruments and
intra-instrument variation across time.

5 Although the satellite itself does not change nominal orbital position,
the raw GOES pixels are not georeferenced, and the geographic location of
a given pixel can vary considerably due to small maneuvers and changes
in spacecraft attitude.

resolutions. The ~4 km resolution pixels in their native
HRAP grid (a polar stereographic projection) were resam-
pled to a ~8 km (0.08° x 0.08°) geographic grid (Fig-
ure 1(c)).

3.3. UCI PERSIANN-CCS

PCCS is a research data product based on cloud-cover
imagery [9]. I downloaded ~40 GB of compressed data
matching the GOES period above. The ~4 km resolu-
tion (0.04° x 0.04°) pixels were resampled to a ~8 km
(0.08° x 0.08°) geographic grid.

3.4. Data Handling and Basic Statistics

Following [25], the first summer/winter were pooled and
split into train:validation (75:25), while the second sum-
mer/winter were pooled and used exclusively for testing.
A summary of the “ground truth” data (Table 1) shows that
only a small fraction of the pixels (i.e., pctr) are rainy, lead-
ing to severe class imbalance in both seasons. For reasons
that are unclear, the summer QPE and GOES data is far
more subject to missing hours, and I only include hours for
which all of the datasets are available.

Note that the entire study area dataset is > 300 million
images; however, the images are 15 x 15 (1.2° x 1.2°) win-
dows around each pixel in the study area (Figure 2), so each
image actually overlaps with a large number of nearby im-

(a) GOES 6.5um  (b) GOES 10.7um

(c) QPE

Figure 1: Example GOES and QPE data for the entire Great
Plains study region (30°-45° N, 90°-105° W), using false-
color to highlight large summer storm systems. (a),(b) are
inputs and (c) is the “ground truth” rainfall rate. Lower val-
ues (dark blue) in the input imagery roughly correspond to
higher values (rainfall in mm/h) in the labels. Each patch is

a 15x15 window within the depicted region.
o P e
(c) QPE

(a) GOES 6.5um (b) GOES 10.7pm

Figure 2: Example input (GOES) patches (a),(b) and
“ground truth” (QPE) patch. It is difficult to see, but there
are isolated rainy pixels at the top of (c).



ages. After a naive image extraction process filled up a 1
TB file system, I stored the study area data (GOES, QPE,
PCCS) as HDFS5 files and wrote a Python generator to ex-
tract 15x15 images on the fly (essentially, a custom data
augmentation pipeline; see Section 5.1.1).

4. Methods

In this section, I describe the main algorithmic tech-
niques (architectures, loss functions, evaluation metrics) ap-
plied while obtaining the experimental results of Section 5.
(Section 5 will describe the software infrastructure and con-
figuration )

4.1. Architectures

I considered three main architectures (see Figure 3), all
of which are intended to learn directly from the (mean-
shifted) input pixel values. It should be understood that net-
work trained for detection and estimation may have differ-
ent “heads” (e.g., with sigmoid or ReLU activation) and that
networks with similar architecture are trained separately for
the two tasks.

4.1.1 Fully-connected (FC) architecture

In all of their work to date, the UCI authors used a
fully-connected architecture. (Structure and parameters are
shown in Figure 3(a),(b).) Surprisingly (for very recent
work), they used a greedy layer-wise pre-training algorithm
to initialize this network — specifically, the stacked denois-
ing autoencoder (SDAE) technique [29] with 40% corrup-
tion rate. Autoencoders are networks trained to reproduce
their outputs using a capacity-constrained representation;
SDAEs are autoencoders where the successive layers are
trained using some kind of input corruption, most com-
monly one similar to dropout [24]. The fully-connected
(FC) layers use ReLU activations. When using 2-channel
inputs, they concatenate two stacks that are (to oversimplify
a bit) trained and fine-tuned separately (Figure 3(b)) [27].

season | source total mean meang Maxg pctr
(px) (mm/h) (mm/h) (mm/h) (%)

S’12 | PCCS | 75431250 0.0768 2.5580 74.3224 0.0300
S’12 |QPE | 75431250 0.0499 1.8515 82.9759 0.0270
W’12 | PCCS | 96643125 0.0826 1.6094 52.1655 0.0513
W12 |QPE |96643125 0.0370 1.0148 59.9985 0.0364
S’13 | PCCS | 73305000 0.1325 3.4460 76.7664 0.0385
S’13  |QPE | 73305000 0.0723 1.7762 120.3330 0.0407
W13 | PCCS | 95934375 0.0753 1.4666 69.8254 0.0514
W13 |QPE |95934375 0.0257 0.6339 76.7304 0.0405

Table 1: Statistics for PCCS (example operational product)
vs. QPE (“ground truth” product). For the rainy-condition
statistics, “rainy” is defined as > 0.1 mm/hr.

An architecture of this kind can exploit spatial informa-
tion within the area covered by its inputs. However, the
ability to generalize some types of information is limited in
a non-convolutional approach.

4.1.2 Simple CNN (SCNN) architecture

Use of a convolutional neural network (CNN) is motivated
by the desire to consider translationally-invariant features.
An “ultra-deep” network is surely not needed for such small
images. As such, I selected a “Simplicity”-style architec-
ture [23] that reflects several current design trends: a num-
ber of 2D convolutional layers organized into sub-stacks
(each with a common filter depth d, and where each sub-
stack uses small 3x3 filters, some with stride 1 and some
with stride 2 in place of maxpool layers), ReL U activations,
and frequent batch normalization [13] layers. (Structure

15x15
(a)
15x15
[DO|FC] [DO|FC] (b)
15x15 15x15 7x7 3x3

d=64 d=128 d=128 d=64
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d=2  d=3 d=512  d=128
pf 10D g
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Figure 3: Network architectures discussed in this report.
Each includes some fully-connected (FC) and dropout (DO)
layers, and may include convolutional (Cnv2D) and batch
normlizatios (BN) layers as well. (a) 1-channel FC archi-
tecture (as in [25, 26]). (b) 2-channel FC architecture (as
in [27]). (c) Simple CNN architecture. (d) Transfer CNN
architecture (based on VGG16 [22]).



and parameters are shown in Figure 3(c).) I made this ar-
chitecture somewhat less simple by replacing the 1x1 con-
volutional layers with a few dense layers (this seemed to
work better in ad hoc experimentation) and adding a spa-
tial dropout [24] layer (with 50% dropout rate) between the
15x15 and 7x7 stacks for regularization.

Note that the network in [23] was designed for CIFAR-
10 and uses an initial filter depth of d = 96 (with the second
sub-stack having d = 192). Since this is a different dataset
and task, probably simpler than CIFAR-10, the capacity can
be expected to be reduced (see Section 5.1.1).

4.1.3 Transfer CNN (TCNN) architecture

The final architecture considered here is an application of
transfer learning. A VGG16 [22] network, pre-trained on
ImageNet’s 224x224 images, is adapted to take an upsam-
pled version of this dataset (the smallest acceptable input
image is 60x60). A simple binary classification head built
from fully-connected layers is attached to and then trained
on top of the frozen VGG16 layers. (Structure and parame-
ters are shown in Figure 3(d).)

While there is no reason to believe that the (computa-
tionally expensive) added depth of VGG16 will help with
these tasks, it is straightforward to try and it is useful to un-
derstand whether this kind of “out of the box™ solution turns
out to work better than a custom network.

4.2. Loss Functions

Since the tasks here are detection and estimation, the
choices of loss function are relatively straightforward. The
main complications relate to the class imbalance problem.

4.2.1 Detection

For the (binary) detection task, I use the common binary
cross-entropy (or sigmoid cross-entropy). Depending on the
season, the positive class (i.e., rain present) in the study re-
gion may range from 1% to 6% of the total pixels. I ex-
perimented with sample class balancing (specifically, over-
sampling the positive class to produce equal numbers of ex-
amples® and class weight-balancing. The former does not
require any changes to the loss function, but the latter scales
the loss contribution of each instance of a given class by a
specified weight. (This functionality is implemented in the
framework I use; see Section 5.)

®Data augmentation would have been preferable to simple replication,
but most methods were rejected for one reason or another. For example,
methods such as shifting and cropping were not used as the goal here is to
classify the center pixel of the patch. Colormap transformations were not
used because this is calibrated infrared emissions data. Rotation remained
a possibility.

4.2.2 Estimation

For the (continuous) estimation task, I use the common
mean squared error (MSE). As with detection, an imbal-
ance (skew) strategy can affect the loss function or not.
Here, I again experimented with sample class balancing.
However, I tried using an additive, scaled Kullback-Leibler
divergence term. (This idea is borrowed from [26].) K-L
divergence is generally written as:

DKL = ZPtrue(C) Y
c

where Py and Pp,.q are the probability mass functions
of the classes within the true and predicted values ¥, and
Ypred- The loss then becomes o - D + M SE for some
relative weight a.

4.3. Evaluation Metrics

Like the loss functions, the evaluation metrics vary by
task.

4.3.1 Detection

For detection, I use binary accuracy, which considers true
negatives (TN), and critical success index (CSI, a metric
common in meteorology) [20], which does not. CSI is sim-
ilar to the I score from information retrieval:

B TP o 2TP
T TP+FP+FN' ' 2TP+FP+FN

CSI

Both metrics are necessary since either by itself can fail
to capture certain types of classification failure. While re-
dundant, we will also occasionally report false alarm rate
(FAR) and probability of detection (POD) for comparison
with prior work:

rp TP

R TP+ FP’ 0 TP+ FN

4.3.2 Estimation

MSE also served as the metric as well as the primary loss
function.

5. Experiments

I now turn to the experimental results. After describ-
ing experimental aspects common throughout this section,
I present quantitative detection results; quantitative estima-
tion results; and a qualitative discussion of their implica-
tions.



5.1. Common configuration aspects

5.1.1 Software and hardware infrastructure

All experiments were conducted using Keras 2.0.4 [3] on
top of TensorFlow 1.1.0 [2], with logs captured and visual-
ized in TensorBoard (see, e.g., Figure 4). All training and
experiments were run on a desktop PC with Ubuntu 16.04
and a NVIDIA GP102-based GPU card.

Extension features of many Keras APIs needed to be
used. For example, I added (a) custom loss and metric func-
tions (to include K-L divergence estimation and terms’); (b)
custom batch generator functions (to avoid materializing all
patches on disk, and reduce disk I/O overhead); (c) code to
programmatically modify the Keras graph.

Greedy layer-wise pre-training is implemented by pro-
grammatically modifying and partially re-training the Keras
graph, just as one does with transfer learning. The SDAE
corruption layers are implemented using a standard Dropout
layer that is turned off during later training phases. In Keras,
a dropout layer can be turned into a no-op by setting the
dropout rate to 0.

"Note that while keras.losses does provide an implementation of
K-L divergence, the function requires its inputs to be valid probability mass
functions. Hence, estimating K-L divergence for each minibatch requires
implementing a custom loss function that computes density estimates for
the minibatch y¢rye and Ypred- Here, I compute histograms with 12 bins.

loss
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Figure 4: Example SCNN capacity experiment on 10° train-
ing samples. For the detection task, d = and d =96
(chosen in [23] for CIFAR-10) clearly overfit, leading to
early stop; lower values, such as d =24 and d =32, do
not. After additional tests of sensitivity to training set size,
d =64 was used for both detection and estimation tasks.

5.1.2 Parameter search space

The following were used consistently in the results re-
ported in this section (as I could not exhaustively explore
all combinations of parameters): (a) FC and CNN ker-
nels used either Xavier normal initialization [5] (before sig-
moid activations) or He normal initialization [7] (before
ReLU activations); (b) a single adaptive optimization algo-
rithm, Adam [15], was used throughout with default param-
eters [3], with model training was capped at 500 epochs (ap-
plying a learning rate stepdown of 0.1 per 5 epochs of loss
non-improvement and early stop at 10 epochs of loss non-
improvement); (c) training and testing was done on random
subsets of 107 patches (out of 117 M in the test set) and a
batch size of 10* patches.

The very large batch size was used for two reasons. First,
from non-systematic experimentation, batch size stochas-
ticity rarely helped with convergence. (This was not true in
every experiment run during this project — only for the ex-
periments actually discussed in this report.) Second, use of
the K-L divergence requires a density estimate of the mini-
batch output; given the highly skewed “true” distribution of
rainfall rate, we expect to need several thousand outputs to
produce any above 10 mm/hour.

5.1.3 Architecture search space

For comparison purposes, the FC architecture capacity,
dropout rate, etc. were always fixed to the values given
by Tao et al. [25, 27, 26]. As previously mentioned, I
implemented their 1- and 2-channel FC architectures (Fig-
ure 3(a),(b)); however, since the 2-channel architecture was
always superior, only the latter will be discussed here. Sim-
ilarly, the SCNN architecture was fixed throughout. Since
this dataset obviously differs from CIFAR-10, I reduced the
capacity parameters of Springenberg et al. [23] after some
initial experiments (e.g., Figure 4).

5.2. Detection

The detection task is complicated by class imbalance:
the simple majority-class classifier (always return “no rain”)
achieves over 94% accuracy, albeit with zero CSI (CSI, like
F} score, ranges on [0, 1]). Naturally, the focus of the de-
tection experiments was largely on how to balance accuracy
and CSIL

By way of example, Table 2 shows a comparison of FC,
SCNN and TCNN as well as the operational PCCS data
product. Each deep learning system is tested in three con-
figurations: no class balancing, class weight-balancing (5:1
positive:negative), and sample class balancing (oversam-
pling the positive class to return equal proportions). Three
configurations achieve better CSI than PCCS, but only one
(SCCN with weight-balancing) attains the state-of-the-art
CSI of 0.306 reported in [27].



While it is promising and scientifically reassuring that
the level of performance reported in [27] can be achieved
and exceeded, it is puzzling that (a) performance of FC
without weight-balancing does not directly replicate that of
[27] and (b) TCNN appears to converge to the majority-
class classifier, even with regularization (dropout) and bal-
ancing. Understanding this is an area of future work.

5.3. Estimation

For the estimation task, the basic architectures given
above for detection were modified by removing the final
sigmoid activation and replacing it with a ReL.U activation
(rainfall rate is non-negative). Since the new target labels
are continuous and the loss functions are different, the FC
and SCNN models were retrained from scratch. (TCNN
was dropped due to its poor performance on the detection
task.)

As with the detection task, much of the focus was on
coping with distribution skew. For example, Table 3 shows
a comparison between FC and SCNN with two main types
of imbalance strategy: adding a K-L divergence term to the
standard MSE loss (conceptually similar to class weight-
balancing), and sample class balancing. Again, they are

PCCS
FAR 0.681
POD 0.391
CSI 0.213
accuracy -
FC FC FC
(unbal.) (WB=5:1) (CB=1:1)
FAR 0.404 0.715 0.813
POD 0.109 0.561 0.807
CSI 0.102 0.233 0.179
accuracy | 0.944 0.893 0.784
SCNN  SCNN SCNN
(unbal.) (WB=5:1) (CB=I:1)
FAR 0.333 0.490 0.538
POD 0.227 0.443 0.459
CSI 0.204 0.311 0.299
accuracy | 0.948 0.943 0.937
TCNN  TCNN TCNN
(unbal.) (WB=5:1) (CB=1:1)
FAR 0.769 0.742 0.742
POD 0.000 0.030 0.030
CSI 0.000 0.028 0.027
accuracy | 0.949 0.946 0.946

Table 2: Results on the rain/no-rain detection task. Each ar-
chitecture (FC, SCNN, TCNN) is tested with class weight-
balancing (WB) and sample class balancing (CB). While
several configurations achieve higher CSI than the opera-
tional PCCS system, only SCNN with weight-balancing ex-
ceeds the best CSI results [27].

also compared to the operational PCCS data product; in ad-
dition, they are compared to a constant estimator that al-
ways returns “zero rain,” which achieves very good MSE.
As the table shows, most configurations do produce estima-
tion performance that improves upon that of the comparison
references (PCCS, zero). Further, three of these configura-
tions do so while producing rainfall rate distributions that
are not wildly divergent from reality (like that of the zero
estimator). Figure 5 illustrates the type of distribution asso-
ciated with such values of Dy . (By contrast, D, values
of 0.005 produce distributions very similar to that of the
zero estimator.)

The outlook here is clearer than on the detection task.
SCNN was able to produce better estimates (0.381 vs.
0.453) than the current state-of-the-art, even when the latter
is tuned for imbalance as well. (The MSE reported in [26]
is 1.322, albeit on half of this test set.)

5.4. Qualitative Discussion of Findings

Current operational products such as PCCS are complex
fusions of hand-engineered features, with added calibration
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(a) FC, o = 1, Dgcr, = 0.026.
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(b) SCNN, a =1, Dk, = 0.016.

Figure 5: Illustrative plots of rain rate vs. frequency:

vs. “ground truth.” Both models weight D, and
MSE equally (o« = 1 in Table 3). The “tighter” curve in (b)
places more mass on the tails. However, minimizing D,
more strongly is undesirable, as this typically corresponds
to all-zero estimates (a vertical orange line at 0).



PCCS[“zero”| FC FC FC FC FC | SCNN | SCNN | SCNN | SCNN | SCNN
K-L K-L K-L K-L K-L K-L
(unbal.) | (@ = 0.2) [(a = 1.0) | (a = 5.0)| (CB=1:1)| (unbal.) | (o = 0.2) | (& = 1.0)| (a = 5.0) | (CB=1:1)
MSE (val.) 0483 | 0466 | 0.453 0.456 - 0.506 | 0506 | 0376 | 0.389 -
MSE (test) | 1.363 | 0.473 | 0.476 | 0.440 | 0453 | 0463 | 0573 | 0485 | 0.441 0.381 0401 | 0.391
Dxr 0441 | 0.073 0.026 | 0005 | 0094 | 0441 | 0.029 0.016 | 0.005 | 0.026

Table 3: Results on the rainfall estimation task. MSE values for sample configurations of SCNN and FC, with corresponding
MSEs for PCCS and a constant zero estimator. While most attain a better test set MSE than PCCS, many do not beat zero,
and few do so while retaining a realistic distribution of rain rates (see Figure 5 for examples of how D, values align with

the true distribution).

against other sensors due to the fact that imagery cannot di-
rectly penetrate clouds. The fact that passive IR-only data
can provide comparable task performance (as reported ear-
lier by Tao et al. [25, 27, 26]) is exciting, so confirmation is
no small thing. Further, the results here suggest that these
results can be improved further.

A first, simple observation is that there is not much evi-
dence that any of the networks — even the deeper networks
— are overfitting. All use some form of regularization dur-
ing training and in general (see, for example, Table 3) the
networks seem to generalize acceptably — from training (not
shown) to validation and from validation to test.

As an example of how the final results of an architecture
like SCNN compares to such operational systems, consider
the winter storm shown in Figure 6. This represents a much
more challenging scenario than that of Figure 1, as the rain
“hot spots” basically correspond to low values in the in-
put imagery — but not over Oklahoma and Arkansas, where
there are low values in the inputs but no rain shown in the
“ground truth.” PCCS estimates heavy rain there, whereas
SCNN estimates at most light rain. However, SCNN is
also too tentative in estimating the extent of heavy rain in
the northeast of the region (compensating for such low bias
tendencies is one reason why PCCS does what it does).?
Hence, it seems likely to me that additional data layers will
be required to match the QPE “ground truth” more closely.

5.5. Potential Directions

There are several obvious technical directions for im-
provement:

First, one way to improve detection accuracy without re-
ducing CSI too much might be to apply ideas from seman-
tic segmentation. The detection models tested here tend to
converge to the majority-class classifier without balancing;
in that configuration, semantic segmentation would prob-
ably not be improved by such techniques (which increase
spatial coherence — but coherence is not the problem when

8 As mentioned in Figure 6, PCCS applies a separately-training R/NR
detection model, so its estimate here is actually conditional on the pres-
ence of rainfall; the estimate of SCNN is unconditional, and MSE would
improve further if the spurious near-zero estimates were filtered out.

guessing “always false”). However, balancing tends to add
some positive noise; in that configuration, spatial coherence
might help. (As a caveat, it is worth noting that, unlike the
usual applications of semantic segmentation, it is not un-
usual to find completely isolated rain pixels in this dataset.)

Second, it might be possible to produce a super-
resolution version of the 4 km data using higher-resolution
images from low-Earth orbit satellites’ as a source of

9LEO satellite data cannot be substituted for GEO satellite data because

(d) PCCS

(e) SCNN, K-L (f) SCNN, bal.
Figure 6: Sample outputs for a storm in the test set (Win-
ter 2013-2014). As with Figure 1, low areas in the inputs
(a),(b) generally correspond to high rain rate areas in the
“ground truth” (c) (> 10 mm/hr). The operational system,
PCCS (d), skews high and spuriously predicts heavy rain
over Arkansas. SCNN with either K-L divergence (e) or
class balancing (f) is still biased toward the mean. (Note
that PCCS estimates in (c) have had a binary rain/no-rain
classifier applied, removing the spurious low but non-zero
estimates visible in (e),(f).)



patches (see, e.g., [4]). The point is not to use the super-
resolution version for visualization or study per se, but
rather to see whether such images provide an “interpreta-
tion” of lower-resolution images (i.e., the likely appearance
of cloud patterns) that can be useful when considering each
given single pixel area where estimation/detection is occur-
ring.

Third, we can take advantage of the fact that we have
a time series of images and apply RNNs/LSTMs, as done
for ground radar images by Shi et al. [21]. However, the
datasets are missing a fair number of hourly observations,
making the “time series” irregular as well as widely-spaced
in time.

6. Conclusions

In this project, I replicated the experimental setup, mod-
els and the performance levels reported in the current state-
of-the-art in hydrology. I further tested convolutional ar-
chitectures under the same circumstances and showed im-
provement on the basic metrics of the detection and estima-
tion tasks. As mentioned earlier, the fact that good results
(comparable to, if not better than, mature operational mod-
els such as PCCS) can be obtained — at least, for this sce-
nario — with so few data layers and so little pipeline com-
plexity is quite remarkable.

While the improvements over the state-of-the-art archi-
tecture (FC) in this application were not enormous, they
do at least confirm the prior work (in the case of detec-
tion [25, 27]) and do show larger improvements over what
is actually reported in the literature for somewhat different
experimental conditions (in the case of estimation [27]).
(The imbalance/skew in the dataset also makes the baseline
accuracy/MSE quite high at the start.)

there is not enough of it. A LEO satellite is only able to revisit a given
geographic location every few days. However, this may still constitute
enough patches to be interesting for the purpose here.
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